Объяснение: для начала нужно узнать, есть ли хоть один y при котором это выражение равно нулю. Т.е. найдём дискриминант уравнения -y^2+2y-5=0
D=b^2-4ac=4-4*(-1)*(-5)=-16<0. Таким образом, это выражение никогда не равно нулю, что говорит о том, что это выражение либо всегда положительное, либо всегда отрицательное.
Можно взять любое значение у, чтобы убедиться что это выражение всегда отрицательно (если есть хоть один y при котором выражение отрицательное, оно уже никак не сможет быть всегда положительным). Можно также посмотреть на коэффициент перед y^2, который равен -1<0, что также доказывает, что парабола направлена вниз (всегда отрицаетльна)
Объяснение:
первый член х,второй хq,третий хq²,
хq²-хq = разности арифметической последовательности.
значит четвертый член хq²+хq²-хq=2хq²-хq
Сумма всех 4 членов 39= х+ хq+ хq²+2хq²-хq
39= х+ 3хq² =х(1+3q²)
сумма второго и третьего равна хq+ хq²=18 , х=18/(q+ q²)
39= (1+3q²) *18/(q+ q²)
39q+39 q²=18+54q²
0=15q²-39q+18 :3
0=5q²-13q+6
q=13±√(169-120) / 10
q₁≠(13+7)/10 так как прогрессия убывающая, q∠1
q₂=(13-7)/10 q=0,6 х=18/(0,6+0,36)= 18.75
18.75 литров в первом.
18,75*0,6=11,25 литров во втором.
11,25*0,6=6,75 литров в третьем.
6,75-11,25= - 4,5 это разность арифметической.
6,75-4,5=2,25литра в четвертом
проверка. 2,25+6,75+11,25+18,75=39
-у² + 2y - 5 =(-у²+2у-1)-4=-(у-1)²-4
-(у-1)²-4<0, т.к. -4<0; -(у-1)²≤0, и сумма отрицательного и неположительного равна отрицательному. Доказано.