Мы делаем предположение, что то, что нам дано неверно, к примеру:
Доказать иррациональность числа
Допускаем противное, что число - рациональное, после чего уже доказываем что наше предположение не верно, в примере с корнем:
Любое рациональное число можно представить как несократимую дробь, где числитель - целое число, а знаменатель - натуральное
Отсюда следует, что чётно, значит, чётно и a; следовательно,
делится на 4, а значит,
и
тоже чётны. Полученное утверждение противоречит несократимости дроби
. Это противоречит изначальному предположению и
- иррациональное число.
Объяснение:
6) Так как произведение корней принимает положительное значение, то и сами корни принимают положительные значения ⇒ подкоренные выражения также положительны.
ОДЗ:
Корень x₁ не удовлетворяет ОДЗ.
7) Знаменатель дроби не равен нулю ⇒ подкоренное выражение строго больше 0. Подкоренное выражение правой части уравнения также строго больше 0, поскольку, в противном случае, значение числителя равно 0, отсюда выходит, что "х" принимает отрицательное значение, что противоречит ОДЗ подкоренного выражения знаменателя дроби.
ОДЗ:
Корень x₁ не удовлетворяет ОДЗ.
8) ОДЗ:
Корень x₁ не удовлетворяет ОДЗ.