М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
foxheb57
foxheb57
27.10.2020 13:22 •  Алгебра

Найди координаты вершины параболы y=2,5x2−8x+13

👇
Открыть все ответы
Ответ:
крот21
крот21
27.10.2020

Объяснение:

1)одинаковыми значками отмечены равные стороны. Значит

СО=ОД=4

Ао=ОВ=3

∠СОА=∠ВОД - вертикальные.

ΔСОА≅ΔДОВ по двум сторонам и углу между ними. значит и третьи стороны равны  СА=ВД=5

5+4+3=12

ответ Р=12 см.

2)ΔАВС≅ΔСДА - по трем сторонам. СВ=ДА=6,АВ=СД=4,АС=7. Р=7+6+4=17 см.

ответ Р=17 см

3)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С

ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС) ⇒КД=МД -против равных углов в равных треугольниках лежат равные стороны

КВ=ВМ -дано,ВД -общая.(равна сама себе) . Отсюда по трем сторонам ΔКВД≅ΔМВД что и требовалось доказать.

4)АК=КВ=ВМ=МС ⇒АВ=ВС -суммы равных частей равны,значит треугольник АВС равнобедренный,а значит углы при основании равны! ∠А=∠С

ΔАКД≅ΔСМД по двум сторонам и углу между ними(АК=МС,∠А=∠С,АД=ДС)

4,7(32 оценок)
Ответ:
hahahagall
hahahagall
27.10.2020

23.12.20 :: 13:04:19 Выбор языка:

Russian

Добро Гость выберите Вход или Регистрация

В ПАТЕНТОВАНИИ СТАТЬИ И ПУБЛИКАЦИИ Научно-техническая библиотекаНаучно-техническая библиотека SciTecLibrary Правила форума

Отправить

Научно-технический форум SciTecLibrary › Точные науки и дисциплины › Дебаты по Теории Относительности Эйнштейна › Неинвариантность Уравнений Максвелла

(Модераторы: peregoudovd, kkdil, E-Eater)

‹ Предыдущая тема | Следующая тема ›

Страниц: 1 2 3 4 ... 6Послать Тему Печать

Неинвариантность Уравнений Максвелла (Прочитано 14867 раз)

meandr

Ветеран форума

***

Вне Форума

Сообщений: 3827

КОСМОполит

Re: Неинвариантность Уравнений Максвелла

ответ #50 - 21.02.17 :: 12:42:22 pop писал(а) 21.02.17 :: 10:15:30:

ответьте ещё раз. Если на опыте измерены величины, которые при подстановке в уравнение дают истинность уравнения, то какие могут быть "трактовки"?

Если в это же уравнение ввести коэффициент в одно из ненулевых слагаемых, то уравнение не останется истинным. И никакими "трактовками" это не исправить.

Отвечу еще раз - первый на этой странице и последний, если не поймете (что скорее всего).

1. В уравнении напряженности (9) п.600 Трактата, составленном для ОБЩЕГО случая движущейся системы, предусмотрен "составной" скалярный потенциал

$\psi+\psi'$

где $\psi$ - обычный статический "кулоновский" потенциал - "собственный" потенциал поля заряда

$\psi'=\vec v \vec A$ - конвективный кинетический потенциал.

...

В современных обозначениях уравнение напряженности (9) в Трактате Максвелла

$\vec E=-\nabla\varphi-\nabla(\vec v \vec A)-\frac{\partial \vec A}{\partial t}$.

Это уравнение не во всех случаях адекватно опытам.

Поэтому

2. В современной ортодоксально-релятивистской теории используется раннее эфирное уравнение напряженности БЕЗ явного разбиения скалярного потенциала на "собственный" и конвективный потенциалы

$\vec E=-\nabla\varphi-\frac{\partial \vec A}{\partial t}$,

хотя наличие такого разделения с конвективным потенциалом неявно подразумевается преобразованиями Лоренца для потенциалов

В таком виде уравнения становятся адекватными опытам - но только в релятивистской трактовке понятий пространства и времени.

3. В классическом представлении пространства и времени уравнение Трактата с наличием конвективного потенциала становится адекватным только с коэффициентом 1/2 и определении вмп А как импульса движущегося поля "собственного" потенциала $\vec A=\varphi \vec v/c^2$

4,4(71 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ