общий для всех заданий такого типа): чтобы графики пересекались и у них должны быть точки пересечения, и эти точки должны быть одинаковы у обоих графиков, значит надо составить систему: y=8+5x и y=5x-2, у из 1 уравнения уже выражен, подставляем во 2: 8+5x=5x-2; 0x=10; x - нет решений, так как это прямые то пересекатся могут только в 1 точке, а так как нет 1 координаты точки, то пересекатся не могут; ответ: не пересекаются.
частный): у прямых равны угловые коэффиценты( 5=5), значит они паралельны и никогда не пересекутся.
Решение: Воспользуемся формулой арифметической прогрессии: an=a1+d*(n-1) Из этой формулы найдём разность арифметической прогрессии (d)^ a10=a1+d*(10-1) -49=-1+d*9 9d=-49+1 9d=-48 d=48/9=5ц 1/3 Для доказательства подставим известные нам данные в формулу an-члена, известного, что он равен (-86) и найдём число (n) этой прогрессии: -86=-1+(-5ц1/3)*(n-1) -86=-1-16n/3+16/3 Приведём к общему знаменателю (3): -258=-3-16n+16 16n=258-3+16 16n=271 n=271/16≈16,9-число не натуральное, следовательно число (-86) не может быть членом данной арифметической прогрессии.
частный): у прямых равны угловые коэффиценты( 5=5), значит они паралельны и никогда не пересекутся.