если один многочлен делится без остатка на другой, то корни одного многочлена, являются корнями делимого многочлена
корни второго 2 и 3
значит и корни первого 2 и 3
2^4 + 2*2^3 + a*2^2 + b*2 + 72 = 0
16 + 16 + 4a + 2b + 72 = 0
2a + b = -52
3^4 + 2*3^3 + a*3^2 + b*3 + 72 = 0
81 + 54 + 9a + 3b + 72 = 0
3a + b = - 69
3a + b - 2a - b = -69 + 52
a = -17
2*(-17) + b = -52
b = -18
ответ a=-17 b=-18
ну можно в столбик разделить, зная что если первый многочлен x^2 -5x + 7 то второй будет (смотрим на первый и свободный члены) типа x^2 + cx + 7 и найти эту c
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
M(x) = x^4 + 2x^3 + ax^2 + bx + 72
N(x) = x^2 - 5x + 6 = (x - 2)(x - 3)
если один многочлен делится без остатка на другой, то корни одного многочлена, являются корнями делимого многочлена
корни второго 2 и 3
значит и корни первого 2 и 3
2^4 + 2*2^3 + a*2^2 + b*2 + 72 = 0
16 + 16 + 4a + 2b + 72 = 0
2a + b = -52
3^4 + 2*3^3 + a*3^2 + b*3 + 72 = 0
81 + 54 + 9a + 3b + 72 = 0
3a + b = - 69
3a + b - 2a - b = -69 + 52
a = -17
2*(-17) + b = -52
b = -18
ответ a=-17 b=-18
ну можно в столбик разделить, зная что если первый многочлен x^2 -5x + 7 то второй будет (смотрим на первый и свободный члены) типа x^2 + cx + 7 и найти эту c