а)2sin²x-3sinx-2=0
Замена sinx=t
2t²-3t-2=0
D=3²+4×2×2=25
t₁= 3+√D÷4=3+5÷ 4=8÷4=2
t₂=3-√D÷4=3-5÷4=-2÷4=-0,5
Возвращаемся к замене
sinx=2 sinx=-0,5
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
4cos²x+4sinx-1=0
cos²x=1-sin²x
4( 1-sin²x)+4sinx-1=0
4-4sin²x+4sinx-1=0
-4sin²x+4sinx-1+4=0
-4 sin²x+4sinx+3=0 ÷(-1)
4sin²x-4sinx-3=0
Замена sinx=t
4t²-4t-3=0
D=4²+4×4×3=16+48=64
t₁=4+√D÷8= 4+8÷8=12÷8=1,5
t₂=4-√D÷8=4-8÷8= -4÷8=-0,5
Возвращаемся к замене
sinx=1,5 sinx=-1\2
решения нет х=(1)⁻k(cтепень)arcsin(-1\2)+πn,n∈Z
-1≤sinx ≥1 x=(1)⁻k × -π\6 +πn,n∈Z
скорость велосипедиста 16 км/час
скорость мотоциклиста 40 км/час
Объяснение:
пусть х км/час (х>0)- скорость велосипедиста, тогда (х+24) км/час - скорость мотоциклиста.
(х ×5) км - расстояние, которое велосипедист за 5 часов, а (х+24)×2 км - расстояние, которое мотоциклист проехал за 2 часа
по условию известно, что и велосипелист, и мотоциклист преодолели одно и то же расстояние, составляем уравнение:
5х=( х+24)×2
5х-2х=48
х=16 (км/час) - скорость велосипедиста
16+24=40 (км/час) - скорость мотоциклиста
16×5=80 ( км)
или
40×2=80( км)
Верно: а,
Объяснение:
a) по теореме "если к обоим частям верного неравенства прибавить одно и тоже положительное число, то неравенство остается верным"