X км/ч - скорость лодки в стоячей воде х+2 - скорость лодки по течению х-2 - скорость лодки против течения 35/x+2 -время движения по течению 35/х-2 - время движения против течения 35/x+2 + 35/x-2 =6 переносим всё в левую часть, приводим к общему знаменателю: в числителе 35(x-2)+35(x-2)-6(x-2)(x+2), в знаменателе (x-2)(x+2) дробь =0 когда числитель =0, а знаменатель нет 35(x-2)+35(x+2)-6(x-2)(x+2)=0 70x-6x^2+24=0 3x^2-35x-12=0 D=35^2-4*3*(-12)=1369 x1=35-37/6=-1/3 не подходит x2=35+37/6=12 скорость лодки в стоячей воде 12км/ч
Арифметическая прогрессия ,значит, каждый следующий член больше предыдущего на определенное число. а2=а1+d a3=а1+d+d
a1+а1+d+а1+d+d=18 3a1+3d=18 3*(a1+d)=18 a1+d=18/3 а1+d=6 - второй член арифм. прогрессии также арифм. прогрессию можно записать как: а1+а2+а3=18 а1+а3+6=18 а1+а3=12 а1=12-а3(это наша будущая подстановка) b2=6+3 b2=9 - второй член геометр. прогрессии теперь воспользуемся свойством геометр. прогрессии (bn)^2=b(n-1)*b(n+1) n-1 и n+1 номер члена прогрессии (b2)^2=(a1+1)*(a3+17) 9^2=(a1+1)*(a3+17) 81=(a1+1)*(a3+17) теперь вводим систему: 81=(a1+1)*(a3+17) а1=12-а3 в 1 уравнение подставим второе 81=(12-а3+1)*(a3+17) 81=(13-а3)*(a3+17) пусть а3=х 81=(13-х)*(х+17) 81=13х +221-х^2-17x 81=-x^2-4x+221 x^2+4x-221+81=0 x^2+4x-140=0 по т. виета х1+х2=-4 х1*х2=-140 х1=10 х2=-14 (не подходит, -14<6,а3<а2, у насвозрастающая) 10=а3 18=10+6+а1 а1=2 ответ: 2,6,10
х+2 - скорость лодки по течению
х-2 - скорость лодки против течения
35/x+2 -время движения по течению
35/х-2 - время движения против течения
35/x+2 + 35/x-2 =6 переносим всё в левую часть, приводим к общему знаменателю: в числителе 35(x-2)+35(x-2)-6(x-2)(x+2), в знаменателе (x-2)(x+2)
дробь =0 когда числитель =0, а знаменатель нет
35(x-2)+35(x+2)-6(x-2)(x+2)=0
70x-6x^2+24=0
3x^2-35x-12=0
D=35^2-4*3*(-12)=1369
x1=35-37/6=-1/3 не подходит
x2=35+37/6=12 скорость лодки в стоячей воде 12км/ч