М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
solovyovaolena
solovyovaolena
10.05.2020 10:49 •  Алгебра

Сложи почленно неравенства 13<21 и −0,9>−3,3.

👇
Ответ:
daniilnz1
daniilnz1
10.05.2020

 9,7 < 20,1

Объяснение:

Cложить почленно неравенства:

13<21       -0,9>-3,3

Складывать можно только неравенства одинакового смысла, то есть, когда знаки > или < одинаковые.

В данном случае неравенства противоположного смысла, знаки разные.

Но можно переписать второе неравенство следующим образом:

-3,3<-0,9

Сейчас неравенства можно складывать:

 13 < 21 +

-3,3<-0,9

13-3,3< 21-0,9

 9,7 < 20,1

4,8(72 оценок)
Открыть все ответы
Ответ:
lol2710
lol2710
10.05.2020
1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ =>
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
4,4(93 оценок)
Ответ:
pilel
pilel
10.05.2020
 - квадратичная функция. График парабола =>
Сначала находим вершину. Пусть А(m;n) - вершина параболы => 
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
 значение у) на промежутке (-∞;1]; 
убывает (большему значению х соответствует меньшее
 значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
4,7(33 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ