Решение: Обозначим стоимость изделий типа Б за (х) руб, тогда стоимость изделий типа А составит (2х) руб Проверим какое количество изделий типа А и типа Б должен выпускать цех, чтобы общая стоимость продукции была наибольшей. ответ А.- 100 и 50- невозможен, т.к. цех может изготавливать за сутки 100 изделий типа А или 300 изделий типа Б ответ Б. 75 и 75 75*2х+75*х=150х+75х=225х (руб) -продукции ответ В. 50 и100 50*2х+100*х=100х+100х=200х (руб) -продукции Отсюда можно сделать вывод, что цеху нужно выпускать продукции: 75 изделий типа А и 75 изделий типа Б, чтобы общая стоимость продукции была наибольшей (225х руб)
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.