Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
а) 1
б) 1
Объяснение:
Касательной к графику функции у (х) является первая производная у', значение которой в точке x₀ равно тангенсу угла между касательной к графику функции у (х) и осью х.
а)
1) Находим производную:
y' = (х⁶ - 4х)' = (х⁶)' - (4х)' = 5x⁵ -4
2) Находим значение производной y' = 5x⁵- 4 в точке x₀ = 1:
y'(1) = 5x⁵ -4 = 5 · 1⁵ - 4 = 5 - 4 = 1
ответ: 1
б)
1) Находим производную:
y' = (√х - 3)' = (√х)' - (3)' = 1/(2√x) - 0 = 1/(2√x)
2) Находим значение производной y' = 1/(2√x) в точке x₀ = 1/4:
y' (1/4) = 1/(2√x) = 1/ (2 · 1/2) = 1/1 = 1
ответ: 1