Делай примерно так,просто другие числа подставь! Пусть 2-й рабочий делает Х дет/ч, тогда 1-й делает Х+3 дет/ч. Время изготовления 72 деталей первым рабочим равно t1=72/Х часов. Время изготовления 108 деталей вторым рабочим равно t2=108/Х+3 часов. По условию t1 на 6 часов меньше, чем t2, т.е. 72/Х + 6 = 108/Х+3 Приводим все части этого уравнения к знаменателю Х(Х+3) и переносим всё в левую часть, получаем: (72Х + 6Х^2 + 18Х -108Х -324)/Х(Х+3) = 0 что равносильно 72Х + 6Х^2 + 18Х -108Х -324 = 0 Делим обе части уравнения на 6: Х^2 - 3Х -54 = 0 D = 225 Х1 = 9 и Х2 = -6 (посторонний корень) ответ: второй рабочий делает 9 дет/час.
Для начала определим точку пересечения прямых. Для этого приравняем оба уравнения:
-7/8х + 17 = -3/5 х - 16 -7/8х + 3/5х = -16 - 17 7/8х - 3/5х = 16+17 11/40 х = 33 х = 33 : 11/40 = 33 * 40/11 х = 120 Чтобы найти у подставляем х в любое из этих уравнений. Я выбрала второе. у = - 3/5 * 120 - 16 = -72-16 = -88 Точка пересечения: (120; -88) Если график уравнения проходит через эту точку, то подставив ее координаты мы должны получить верное выражение: у+рх =0 -88+120р=0 120р = -88 р = -88/120 р = -11/15 ответ: -11/15
Пусть 2-й рабочий делает Х дет/ч, тогда 1-й делает Х+3 дет/ч.
Время изготовления 72 деталей первым рабочим равно t1=72/Х часов. Время изготовления 108 деталей вторым рабочим равно t2=108/Х+3 часов. По условию t1 на 6 часов меньше, чем t2, т.е. 72/Х + 6 = 108/Х+3 Приводим все части этого уравнения к знаменателю Х(Х+3) и переносим всё в левую часть, получаем: (72Х + 6Х^2 + 18Х -108Х -324)/Х(Х+3) = 0 что равносильно 72Х + 6Х^2 + 18Х -108Х -324 = 0 Делим обе части уравнения на 6: Х^2 - 3Х -54 = 0 D = 225 Х1 = 9 и Х2 = -6 (посторонний корень) ответ: второй рабочий делает 9 дет/час.