все таки математика настигла огромной волной и накрыла корнями и дробными степенями ???
(x)^1/n = ⁿ√x (например x^1/3 = ∛x x^1/2 = √x)
x² - y² = (x - y)(x + y)
(x + y)² = x² + 2xy + y²
(x^n)^m = x^(nn)
x^n * x^m = x^(n+m)
ⁿ√xⁿ = x (для положительных х)
x^-1 = 1/x
1. 64^1/6 = ⁶√(2⁶) = 2
2. 27 ^2/3 = ∛ 27² = ∛ (3³)² = 3² = 9
3. 0^51/4 = 0 (0 в любой положительной степени = 0)
5. x^1/2 = (x^1/4)²
(a^1/2 - b^1/2) / (a^1/4 + b^1/4) = (a^1/4 - b^1/4)(a^1/4 + b^1/4)/(a^1/4 + b^1/4) = a^1/4 - b^1/4
4. (x^1/3 + y^1/3)² - 2∛(xy) - 1/(∛y)^-2 = x^2/3 + 2x^1/3*y^1/3 + y^2/3 - 2x^1/3*y^1/3 - y^2/3 = x^2/3
^ - степень ( x^2/3 = ∛x² икс в степени две третьих)
Объяснение:
4. x₃=20 x₅=-40 S₉=?
{x₃=x₁+2d=20
{x₅=x₁+4d=-40
Вычитаем из второго уравнения первое:
2d=-60 |÷2
d=-30.
x₁+2*(-30)=20
x₁-60=20
x₁=80.
x₉=x₁+8d=
S₅=80+8*(-30)=80+(-240)=80-240=-160.
S₉=(80+(-160)*9/2=(80-160)*9/2=-80*9/2=-40*9=-360.
ответ: S₉=-360.
5. S₃=168 S₄₊₅₊₆=21 S₅=?
{S₃=b₁+b₁q+b₁q²=168 {b₁*(1+q+q²)=168
{S₄₊₅₊₆=b₁q³+b₁q⁴+b₁q⁵ {b₁q³*(1+q+q²)=21
Разделим второе уравнение на первое:
q³=1/8=(1/2)³
q=1/2.
b₁*(1+(1/2)+(1/2)²)=168
b₁*(1+(1/2)+(1/4))=168
b₁*(1³/₄)=168
(7/4)*b₁=168
b₁=168*4/7=24*4
b₁=96.
S₅=96*(1-(1/2)⁵)/(1-(1/2))=96*(1-(1/32))/(1/2)=96*(31/32)/(1/2)=
=(96*31/32)/(1/2)=31*3/(1/2)=93*2=186.
ответ: S₅=186.