М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
artemdychokp00pti
artemdychokp00pti
30.07.2022 12:20 •  Алгебра

Розвяжи рівняння 2gt x-2 gtx-3=0

👇
Открыть все ответы
Ответ:
kimhakip09577
kimhakip09577
30.07.2022

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A, H, W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

N – множество всех натуральных чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

J – множество иррациональных чисел;

R – множество действительных чисел;

C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q, это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A.

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z, таким образом, числовое множество N включено в Z, это обозначается как N⊂Z. Также можно использовать запись Z⊃N, которая означает, что множество всех целых чисел Z включает множество N. Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в фигурные скобки, что согласуется с общими правилами описания множеств. Например, множество, состоящее из трех чисел 0, −0,25 и 4/7 можно описать как {0, −0,25, 4/7}.

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99включительно можно записать как {3, 5, 7, …, 99}.

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …}.

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства}. Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3. Это же множество можно описать как {11,19, 27, …}.

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N, Z, R, и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10, −9, −8,56, 0, все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞). В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞). Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0}, [−5, −1,3] и (7, +∞).

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими

4,5(2 оценок)
Ответ:
ENOT234u
ENOT234u
30.07.2022

1) (x+5)(x+2) > 0;

Для начала обозначим на координатной прямой нули ф-ции f(x) = (x+5)(x+2)

x + 5 = 0,    x = -5

x + 2 = 0,    x = -2

(смотри рисунок)

Точки исключенны так как строго >.

Найдем знак этой ф-ции на каждом из промежутков:

 

(-∞; -5) -  берем например -10. Подставим в наше неравенство. Имеем:

(-10 + 5)(-10 + 2) = (-5) * (-8),

Тоесть там и там отрицательное но когда умножим дасть положительное число, тоесть 40.

Значит на прмежутке (-∞; -5) знак положительной.

 

(-5; -2) - аналогично. Берем например -3.Подставим:

(-3 + 5)(-3 + 2) = 2 * (-1) = -2 - отрицательное. Значит на промежутке (-5; -2) знак отрицательной.

 

(-2; +∞). Берем например 0:

(0 + 5)(0 + 2) = 5 * 2 = 10

Значит на промежутке (-2; +∞) знак положительный.

 

Поскольку У нас неравенство > то берем промежутки с положительным знаком.

ответ: (-∞; -5) U (-2; +∞)

 

2) (x+1)(x-4) ≤ 0;

Найдем нули ф-ции:

х + 1 =0,  х = -1

х - 4 = 0,  х = 4

 

Точки включены (зарисованые)

на промежутке (-∞; -1] - положительный знак

на пр-ке [-1; 4] - отрицательный

на пр-ке [4; +∞) - положительной.

 

Поскольке ≤, то ответ: [-1; 4]

 

3) 

точку 7 - включить,  а точку -8  - исключить

Смотри рисунок.

(-∞; -8) -  "+"

(-8; 7]  -  "-"

[7; +∞)  - "+"

  ответ: (-8; 7]

 

4)

Точка -6 - включить;  точку 10 - исключить

(∞; -6] - "+"

[-6;10) - "-"

(10; +∞) - "+"

ответ: (∞; -6] U (10; +∞)

 

5) (x-1) x (x+3)> 0;

x = 1

x = 0

x = -3

Все точки исключены.

(-∞; -3) - "-"

(-3; 0) - "+"

(0; 1) - "-"

(1; +∞) - "+"

ответ: (-3; 0) U (1; +∞)

 

6) x(x+2)(x-3) > 0

x = 0

x = -2

x = 3

Все точки исключены.

(-∞; -2) - "-"

(-2; 0) - "+"

(0; 3) - "-"

(3; +∞) - "+"

ответ: (-2; 0) U (3; +∞)

 

7) 

Все точки исключены.

(-∞; -1) - "-"

(-1; 0) - "+"

(0; 0,5) - "-"

(0,5; +∞) - "+"

ответ: (-1; 0) U (0,5; +∞)

 

8) 

Точки 0 и -1/3 - включать, а точку 2 - нет.

(-∞; -1/3] - "-"

[-1/3; 0] - "+"

[0; 2) - "-"

(2; +∞) - "+"

ответ: (-∞; -1/3] U [0; 2)

4,6(86 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ