Складываем оба уравнения, получим:
x² - 2 * x * y + y² = 1.
Разложим по формуле квадрата разности, получим:
(x - y)² = 1,
x - y = 1,
x - y = -1.
Вычитаем из первого системного уравнения второе, получим:
x² - y² = 3.
Разложим как разность квадратов, получим:
(x - y) * (x + y) = 3.
Следовательно, получим две системы уравнений:
1. (x - y) * (x + y) = 3 и x - y = 1,
x + y = 3 и x - y = 1.
Складываем почленно:
2 * x = 4, откуда х = 2,
y = x - 1 = 2 - 1 = 1.
2. (x - y) * (x + y) = 3 и x - y = -1,
x + y = -3 и x - y = -1,
2 * x = -4,
x = -2,
y = x + 1 = -2 + 1 = -1.
ответ: (2; 1) и (-2; -1).
x*t км,
по формуле: V=S/t, где V - скорость, S - путь, t - время,
следовательно S=V*t, по условию задачи это x*t
мотоциклисту потребовалось времени до встречи t мот= d/y,
где по условию задачи d - путь мотоциклиста до встречи, а у - скорость
смотри формулу V=S/t => t+S/V
Общее расстояние между пунктами M и N складывается из трех частей:
путь автомобиля до момента движения мотоциклиста, он нам известен x*t
путь мотоциклиста до встречи, по условию это d
путь автомобиля от момента движения мотоциклиста до встречи с ним, он нам не известен, но может быть вычислен по формуле s=V*T,
где V это скорость автомобиля, по условию - x
T - это время движения автомобиля до встречи, оно равно времени движения мотоциклиста. Мы его вычислили t мот=d/y,
т.о. неизвестный отрезок пути равен s=x*d/y
общее расстояние между пунктами равно
S(MN)=x*t+x*d/y+d