Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.
Для построение этого вида функций, которые под знаком модуля содержат всю функцию, можно построить отдельно функцию, которая находится под знаком модуля, а затем отобразить относительно оси Ох ту ее часть, для которой значения у – отрицательные. Это позволит получить положительные значения у для всей функции.
Итак, построим параболу, которая будет графиком заданной функции без знака модуля:
у1 = 6x – 5 – x^2.
Сначала найдем ее вершину с формулы х = –b / (2a):
х = –6 / (2*(–1)) = 3
Вычислим значение функции:
у1(3) = 6*3 – 5 – 3^2 = 4.
Получили в точке (3; 4).
Точки пересечения с осью Ох найдем, подставив в уравнение для у1 значение у1 = 0 и решив полученное уравнение:
6x – 5 – x^2 = 0
По теореме Виета или любым другим доступным находим, что корнями уравнения будут значения 1 и 5. Значит функция пересечет ось Ох в точках (1; 0) и (5; 0).
Построенный график – это график функции у1 = 6x – 5 – x^2.
Теперь отображаем относительно оси Ох все, что находится под ней, и получаем график функции у = |6x – 5 – x^2|.
Построить график можно и другим подставляя значения х в заданную функцию с модулем. Но проведенный анализ Вам понять сущность модуля при построении графиков.
Объяснение:
Я к примеру объяснил.