М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nikia1
Nikia1
03.12.2021 04:11 •  Алгебра

решить один пример по алгебре (8 класс)​

👇
Ответ:
CockDown
CockDown
03.12.2021

решение смотри на фотографии

Объяснение:


решить один пример по алгебре (8 класс)​
4,6(17 оценок)
Открыть все ответы
Ответ:
marina18190
marina18190
03.12.2021

Пусть вся дорога 1 (единица), тогда х время, за которое первая бригада может отремонтировать дорогу, а у время второй бригады. Совместная работа двух бригад 6 ч. Если первая бригада отремонтирует 3/5 дороги, то время затратит (3/5)÷(1/х)=3х/5 ; если вторая бригада отремонтирует оставшуюся часть: 1-3/5=2/5 дороги. то время затратит (2/5)÷(1/у)=2у/5 , и времени они затратят 12 часов. Составим два уравнения:

1/х+1/у=1/6

3х/5+2у/5=12

Выделим х во втором уравнении:

3х/5+2у/5=12

15х+10у=300

3х+2у=60

х=(60-2у)/3

Подставим значение х в первое уравнение:

3/(60-3у)+1/у=1/6

18у+360-12у=60у-2у²

2у²-54у+360=0

у²-27у+180=0

D=9

у₁=12 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₁=(60-2*12)/3=36/3=12 часов первая бригада может отремонтировать дорогу самостоятельно.

у₂=15 часов вторая бригада может отремонтировать дорогу самостоятельно.

х₂=(60-2*15)/3=30/3=10 часов первая бригада может отремонтировать дорогу самостоятельно.

ответ: Или первая за 12 часов и вторая за 12 часов; Или первая за 10 часов и вторая за 15 часов.

4,6(56 оценок)
Ответ:
zhuravskaya1991
zhuravskaya1991
03.12.2021
Пусть М(x;y;z) - произвольная точка искомой плоскости.
Тогда векторы МР; РQ  и n - нормальный вектор плоскости  3x+2y-z+5=0  коллинеарны.
Условием коллинеарности является равенство нулю определителя третьего порядка составленного из координат этих векторов.
Находим координаты векторов
МР(2-x;0-y;-1-z) 
PQ(1-2;-1-0;3-1)= PQ(-1;-1;2)
n=(3;2;-1)
Записываем определитель
\left\begin{array}{ccc}2-x&-y&-1-z\\-1&-1&2\\3&2&-1\end{array}\right =0
Нет знака модуля на клавиатуре для обозначения определителя.
Раскрываем определитель и получаем ответ.
-3(2-x)+y(-5)+(-1-z)1=0
-6+3x-5y-1-z=0
3x-5y-z-7=0
нормальный вектор этой плоскости (3;-5;-1)  ортогонален нормальному вектору n(3;2;-1) Их скалярное произведение - сумма произведений одноименных координат- равно 0
3·3+(-5)·2+(-1)·(-1)=0 - верно

ответ. 3х-5у-z-7=0
4,5(8 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ