М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
amishka01
amishka01
20.01.2020 22:59 •  Алгебра

Реши неравенства: 1) (x - 0,5)(x +4)³ (x - 1,5)⁴ < 0. 2) (x -1)()x+1,4)² (x - 3)*в 5 степени больше или равно 0​

👇
Открыть все ответы
Ответ:
Alieta
Alieta
20.01.2020

верно , обратное нет

Объяснение:

пусть р - простое , рассмотрим остатки от деления р на 6 :

 p = 6b + q ,  где  0 ≤ q ≤ 5 , если q = 2 ,  то p = 2(3b+1) , это

число четно и больше 2 , значит не простое , если q = 3 , то    

p = 3(2q+1) ,  это число кратно 3 и больше 3 и значит также не

простое , если q = 4 ,  то p = 2( 3b + 2) , это число четно и

больше 2 и следовательно не простое , если q = 0 , то p

 кратно 6 и не может быть простым , остаются 2 варианта : 1)

q= 1 ,  то есть p = 6b+1   и 2) q = 5 ⇒ p = 6b + 5 = 6b+6-1 =    

6(b+1) - 1 = 6k -1 ,  а значит любое простое имеет вид :  p = 6n±1

обратное утверждение неверно :  например число 35 = 6·6 - 1

, но простым число 35  не является

4,4(58 оценок)
Ответ:
arykovevgeny
arykovevgeny
20.01.2020
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,8(55 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ