Диагональ в многоугольнике (многограннике) — отрезок, соединяющий любые две несмежные вершины, то есть, вершины, не принадлежащие одной стороне многоугольника (одному ребру многогранника). У многогранников различают диагонали граней (рассматриваемых как плоские многоугольники) и пространственные диагонали, выходящие за пределы граней. У многогранников, имеющих треугольные грани есть только пространственные диагонали. Подсчет диагоналей Диагоналей нет у треугольника на плоскости и у тетраэдра в пространстве, поскольку все вершины этих фигур попарно связаны сторонами (ребрами). Количество диагоналей N у многоугольника легко вычислить по формуле: N = n·(n – 3)/2, где n — число вершин многоугольника. По этой формуле нетрудно найти, чтоу треугольника — 0 диагоналей у прямоугольника — 2 диагоналиу пятиугольника — 5 диагоналейу шестиугольника — 9 диагоналейу восьмиугольника — 20 диагоналейу 12-угольника — 54 диагоналиу 24-угольника — 252 диагонали
Рассмотрим функцию
Её область определения:
Приравниваем функцию к нулю:
Произведение равно нулю, если один из множителей равен нулю
На интервале найдем решение неравенства
_+___(-2)___-___(0)___-___(2)___+___
Решением неравенства есть промежуток -
Целое отрицательное число из промежутка: -1
ответ: -1.
При умножении неравенства на отрицательное число, знак неравенства меняется на противоположный
Целые отрицательные числа промежутка: -3; -2; -1.
ответ: -3; -2; -1.
Рассмотрим функцию
Область определения:
Приравниваем функцию к нулю:
Дробь обращается в 0 тогда, когда числитель равен нулю
По т. Виета:
Найдем решение неравенства
___+___(-1)___-____(0)____-__(2)____+____
Целых отрицательных чисел - НЕТ
ответ: целых отрицательных чисел нет
Рассмотрим функцию
Область определения функции:
Приравниваем функцию к нулю
Дробь обращается в нуль, если числитель равен нулю
Вычислим решение неравенства:
__+___(-√3)__-__[-1]__+___[0]___-__(√3)__+____
Решение неравенства:
Целые отрицательные решения : -1
ответ: -1.