Пусть хкм/ч-скорость второго, тогда скорость первого равна х+10км/ч. Когда указывается, что тот или иной объект добрался до пункта назначения за какое-то время раньше или позже, необходимо от меньшей скорости, то есть хкм/ч, отнять большую. Расстояние S=560 км, скорость первого u=х+10км/ч, а скорость второго u=xкм/ч. Таким образом, составляем уравнение: 560/х -560/х+10=1. Решая это дробно-рациональное уравнение, получим квадратное уравнение х2+10х-5600=0, положительным корнем которого является число 2.5.ответ:2.5км/ч-скорость второго автомобиля, а скорость первого 12.5 км/ч.
Примем: Х км/час скорость по шоссе; 32/Х время по шоссе; (Х+20) скорость по автостраде; 60/(Х+20) время по автостраде. Так как общее время = 1 час, составим и решим уравнение: 32/Х + 60/(Х+20) = 1; приведем к общему знаменателю (Х*(Х+20)) и избавимся от него, умножив на него все члены уравнения: 32Х + 640 + 60Х = Х² + 20Х; Х²-72Х - 640 = 0; Д=72²+4*640 = 5184+2560 = 7744; Д>0, продолжим; Х₁ = (72 + √Д)/2 = (72 + √7744)/2 = (72+88)/2 = 80 (км/час); Х₂ =72-√Д = -8 (в расчет не берем, как не имеющий смысла) Х+20 = 80+20 = 100 (км/час); ответ: скорость по шоссе 80км/час; скорость по автостраде 100 км/час; Проверка: 32/80 +60/100 = 1; 0,4+0,6=1; 1=1
Кв. уравнение имеет два корня, когда D>0, следовательно
b^2 * 4ac > 0
q^2 * 4 > 0
При всех значениях (т.к q в квадрате), кроме нуля, т.к. 0*4=0.
ответ: все значения, кроме q=0