HoteМодератор
Это Проверенный ответ
×
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Подробнее - на -
Объяснение:
Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2
x=2, y=1
x=8/7, y=4/7