М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
averdarya
averdarya
11.06.2020 20:13 •  Алгебра

5х+3у+26=0 решить кофициэнт на х​

👇
Открыть все ответы
Ответ:
vkutepova1999
vkutepova1999
11.06.2020

№1.

Если трехчлен (2х²- 7х+а) содержит множитель ( х - 4), значит один из  корней уравнения 2х²- 7х+а= 0 равен 4, т.е. х=4

Подставим х=4 в уравнение 2х²- 7х+а=0 и найдем а.

2·4²- 7·4+а =0

а=28-32

а= - 4

№2.

4х²+ ах + 6 содержит множитель ( 2х + 1)

1)2х+1=0

х= - 0,5 - это первый корень уравнения 4х²+ах+6=0

2) Делим обе части уравнения 4х²+ах+6=0 на 4 и получим приведенное квадратное уравнение:

х²+0,25ах+1,5=0

3) По теореме Виета для приведенного квадратного уравнения найдем второй корень,

х₁ * х₂ = 1,5

х₂=1,5 : (-0,5)

х₂= - 3

4) По теореме Виета для приведенного квадратного уравнения найдем второй коэффициент, стоящий при х.

х₁+х₂= -0,25а

- 0,25а = - 0,5 + (-3)

- 0,25а = - 3,5

а = - 3,5 : (-0,25)

а = 14

4,8(32 оценок)
Ответ:
Пакмен007
Пакмен007
11.06.2020

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ