Для решения нужно знать некоторые теоремы: 1) любая высота в равностороннем треугольнике является биссектрисой и медианой этого треугольника, а также серединным перпендикуляром к соответствующей стороне этого треугольника. 2) теорема Пифагора. 3) медианы любого треугольника точкой пересечения делятся в отношении 2:1 считая от вершины. Пусть сторона данного треугольника a=(V3). Проведем какую-либо высоту в данном треугольнике, эта высота является медианой, поэтому делит сторону, к которой проведена пополам. Рассмотрим один из двух прямоугольных треугольников, на которые делится исходных равносторонний треугольник проведенной высотой. Гипотенуза прямоугольного треугольника = a, один из катетов = (a/2). Найдем второй катет, который является высотой исходного треугольника. По т. Пифагора: a^2 = (a/2)^2 + h^2; h^2 = a^2 - (a/2)^2 = a^2 - (a^2/4) = (3/4)*(a^2). h = a*(V3)/2, Центр описанной окружности - это точка пересечения серединных перпендикуляров к сторонам данного треугольника. Но в равностороннем треугольнике все серединные перпендикуляры являются медианами (а также биссектрисами и высотами) этого треугольника. Поэтому длина h это длина медианы, а искомый радиус (в соответствии с теоремой 3) ) будет равен (2/3) от h. Т.е. R = (2/3)*h = (2/3)*a*(V3)/2 = (2/3)*(V3)*(V3)/2 = 1.
1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)
1) 3(х - 1) - 2(3 - 7х) = 2(х - 2) 2) 10(1 - 2х) = 5(2х - 3) - 3(11х - 5)
3х - 3 - 6 + 14х = 2х - 4 10 - 20х = 10х - 15 - 33х + 15
3х + 14х - 2х = - 4 + 3 + 6 - 20х - 10х + 33х = - 15 + 15 - 10
15х = 5 3х = - 10
х = 5 : 15 х = - 10 : 3
х = 5/15 = 1/3 х = - 10/3 = - 3 1/3
3) 1,3(х - 0,7) - 0,12(х + 10) - 5х = - 9,75
1,3х - 0,91 - 0,12х - 1,2 - 5х = - 9,75
1,3х - 0,12х - 5х = - 9,75 + 0,91 + 1,2
- 3,82х = - 7,64
х = - 7,64 : (- 3,82)
х = 2
4) 2,5(0,2 + х) - 0,5(х - 0,7) - 0,2х = 0,5
0,5 + 2,5х - 0,5х + 0,35 - 0,2х = 0,5
2,5х - 0,5х - 0,2х = 0,5 - 0,5 - 0,35
1,8х = - 0,35
х = - 0,35 : 1,8
х = - 35/180 = - 7/36