∠BOA = 106°
∠COA = 108°
∠COB = 146°
Объяснение:
В треугольниках MOC и MOA:
MO - общая сторона, OC = OA - радиус вписанной окружности, ∠MCO=∠MAO=90°
а значит треугольники MOC и MOA равны (MA и MC равны, вычисляются по т. Пифагора. Поэтому треугольники равны по 3 сторонам)
Таким образом, ∠NMO = ∠LMO. Аналогично ∠MNO = ∠LNO.
Поэтому
∠NML = 2 * ∠NMO = 72°,
∠MNL = 2 * ∠ONL = 74°
Из 4-угольников ANBO и AMCO:
∠BOA = 360° - ∠OAN - ∠OBN - ∠ANB = 180° - 74° = 106°
∠AOC = 360° - ∠OAM - ∠OCM - ∠AMC = 180° - 72° = 108°
∠COB = 360° - ∠BOA - ∠AOC = 360° - 106° - 108° = 146°
а)3(a-b)
б)20a²⁰b⁹
Объяснение:
а)(а/b-b/a)*(3ab)/(a+b)=
Сначала в скобках:
(а/b-b/a)
общий знаменатель аb, над числителями дополнительные множители:
(a*a-b*b)/ab=(a²-b²)/ab
Числитель распишем по формуле разности квадратов:
[(a-b)(a+b)]/ab;
Теперь умножение:
[(a-b)(a+b)]/ab * (3ab)/(a+b)=
числитель: [(a-b)(a+b)(3ab)]
знаменатель: (ab)(a+b)
сокращение ab и ab, (a+b) и (a+b)
=3(a-b)
в)(-2 и 1/2a³b)⁴*3 и 1/5a⁸b⁵=
переведём смешанные дроби в неправильные дроби для удобства вычислений:
=(-5/2a³b)⁴*16/5a⁸b⁵=
возведём первую скобку в четвёртую степень: (показатели степеней перемножаются)
=25/4a¹²b⁴
умножение:
=25/4a¹²b⁴*16/5a⁸b⁵=
числитель: 25a¹²b⁴*16a⁸b⁵
знаменатель:4*5
сокращение (деление) 16 и 4 на 4, 25 и 5 на 5
=5a¹²b⁴*4a⁸b⁵= степени складываются
=20a²⁰b⁹