М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Miki236
Miki236
08.06.2021 09:56 •  Алгебра

Привет всем решить Реши систему: первое уравнение х+у=1; второе уравнение: х-у=3.

👇
Ответ:
Takyshika
Takyshika
08.06.2021

x=2, y=-1

Объяснение:

x+y=1

x-y=3

x=1-y

x-y=3

(1-y)-y=3

1-y-y=3

1-2y=3

-2y=2

-y=1

y=-1

x=1-y=1-(-1)=2

4,8(53 оценок)
Открыть все ответы
Ответ:
NeoBall
NeoBall
08.06.2021
1) sin 3x - sin 5x > 0
По формуле разности синусов
2sin \frac{3x-5x}{2}*cos \frac{3x+5x}{2}\ \textgreater \ 0
2sin(-x)*cos(4x) > 0
-2sin x*cos(4x) > 0
Делим на -2, при этом знак неравенства меняется.
sin x*cos(4x) < 0
Два варианта. Множители должны иметь разные знаки.
a)
{ sin x < 0
{ cos(4x) > 0
Решаем неравенства
{ x ∈ (-pi+2pi*k; 2pi*k)
{ 4x ∈ (-pi/2+2pi*k; pi/2+2pi*k); x ∈ (-pi/8+pi/2*k; pi/8+pi/2*k)
Решение 2 неравенства я показал на рисунке. Это жирные дуги.
Пересечение неравенств - это нижняя часть круга, где sin x < 0
x ∈ (-pi+2pi*k; -7pi/8+2pi*k) U (-5pi/8+2pi*k; -3pi/8+2pi*k) U (-pi/8+2pi*k; 2pi*k)

б)
{ sin x > 0
{ cos(4x) < 0
Решаем неравенства
{ x ∈ (2pi*k; pi+2pi*k)
{ 4x ∈ (pi/2+2pi*k; 3pi/2+2pi*k); x ∈ (pi/8+pi/2*k; 3pi/8+pi/2*k)
Решение 2 неравенства - это нежирные дуги на том же рисунке.
Пересечение неравенств - это верхняя часть круга, где sin x > 0
x ∈ (pi/8+2pi*k; 3pi/8+2pi*k) U (5pi/8+2pi*k; 7pi/8+2pi*k)

2) Про arcsin x - а где неравенство?

решить эти 1) sin3x> sin5x 2) arcsinx
4,7(14 оценок)
Ответ:
Linarikkomarik
Linarikkomarik
08.06.2021
Область допустимых значений (ОДЗ): x >= -4.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.
4,6(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ