Обозначим а ---скорость первого пешехода в км/час b ---скорость второго пешехода в км/час t ---время в пути до встречи (для обоих пешеходов оно одинаковое))) тогда до встречи первый часть пути =(a*t) км до встречи второй часть пути =(b*t) км после встречи первый оставшуюся ему часть пути за 4 часа b * t / a = 4 отсюда: t = 4 * a / b после встречи второй оставшуюся ему часть пути за 9 часов a * t / b = 9 a*4*a / b² = 9 a / b = 3 / 2 t = 4*3/2 = 2*3 = 6 ответ: первый был в пути 4+6 = 10 часов второй был в пути 9+6 = 15 часов 6 часов они шли до встречи...
T1=x t2=x+12 v1=1/x v2=1/(x+12) 1/x+1/(x+12)=1/8 1+x/(x+12)=x/8 (x+12)+x(x+12)=x(x+12)/8 8x+96+8x^2+96x=x^2+12x 7x^2+92x+96=0 7x2 + 92x + 96 = 0 найдем дискриминант квадратного уравнения: d = b2 - 4ac = 922 - 4·7·96 = 8464 - 2688 = 5776 так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня: x1 = -12 x2 = -8/7 ответ x=12 первая бригада за 12 часов вторая за 24
ответ: неблагодари
Объяснение: