1. Упростить выражение:1-Sin (в квадрате) альфа - Cos (в квадрате) альфа 2. Зная, что 0 < альфа < пи/2найти: Sin альфа, если Cos альфа = 1/4 Ctg альфа, если Sin альфа = 12/13 1) 1-Sin (в квадрате) альфа - Cos (в квадрате) альфа= Sin (в квадрате) альфа +Cos (в квадрате) альфа - Sin (в квадрате) альфа - Cos (в квадрате) альфа=02) 0 < альфа < пи/2 - 1четверть Sin (в квадрате) альфа +Cos (в квадрате)альфа =1Sin (в квадрате) альфа = 1- 1/16 = 15/16Sin альфа = + или - корень из 15/16т.к. синус в 1 четрерти положительный,то - корень 15/16 не удовлетворяет.ответ синус альфа =(корень 15)/4 2) Sin (в квадрате) альфа +Cos (в квадрате)альфа=1косинус(в квадрате) = 1-144/169косинус альфа = +или - 5/13т.к. косинус в 1 четвернти положительный то =5/13 не удовлетворяет.Ctg альфа = 5*13/13*12 = 5/12ответ : Ctg альфа= 5/12
Графіком квадратичної функції є парабола, що має вершину у початку координат і проходить через точку А(2;-8). Задайте цю функцію формулою.
Графиком квадратичной функции является парабола, что вершину в начале координат и проходит через точку А (2; -8). Задайте эту функцию формулой
Решение: Уравнение параболы задается уравнением y =ax²+bx+с или х = ay²+by+с(данное уравнение можете не рассматривать) где а≠0 Так как вершина параболы находится в начале координат то b=c=0 Уравнение параболы можно записать как: y =ax² или х = ay²(данное уравнение можете не рассматривать) Найдем постоянную величину а из уравнений подставив координаты точки А(2;-8) а = у/х² = -8/2² =-8/4=-2 y = -2x² a = x/y² =2/(-8)² =2/64 =1/32 x = y²/32 (данное уравнение можете не рассматривать) Рішення : Рівняння параболи задається рівнянням y = ax ² + bx + з або х = ay ² + by + з де а ≠ 0 Так як вершина параболи знаходиться на початку координат то b = c = 0 рівняння можна записати як y = ax ² або х = ay ² Знайдемо постійну величину а з рівнянь підставивши координати точки А (2; -8) а = у / х ² = -8 / 2 ² = -8/4 = -2 y =-2x ² a = x / y ² = 2 / (-8) ² = 2/64 = 1/32 x = y ² / 32
(6a-30)(b-2)
Объяснение:
6a(b-2)-30(b-2)=(6a-30)(b-2)