Сумма и разность считается след образом, например:
3_1/2 - 1_3/5 =
1) приводятся дроби к общему знаменателю;
=3_5/10 - 1_6/10 =
2) при вычитании, можно занимать целую часть в уменьшаемом для возможности работать с дробной частью
=2_15/10 - 1_6/10 =
3) вычитаем целые части, вычитаем дробные части, получаем
= 1_9/10
4) при необходимости и возможности производим сокращения в дробной части.
= 1_9/10 = 1,9 (в данном случаем перевели в десятичную дробь)
С суммой аналогично:
2_1/3 + 1_4/5 = 2_5/15 + 1_12/15 = 3_17/15 = 4_2/15
Умножение и деление смешанных чисел происходят след образом:
1_2/3 * 2_3/5 =
1) Переводим смешанные числа в неправильную дробь
= 5/3 * 13/5 =
2) числитель умножаем на числитель, знаменатель на знаменатель=
(5*13) / (3 * 5) =
3) производим сокращения, если они возможны
=13/ 3 =
4) выделяем целую часть в получившейся неправильной дроби:
=4_1/3
С делением аналогично, только действуем по правилам деления дробей, т е умножаем на дробь, обратную делителю.
2_3/4 : 1_5/6 = 11/4 : 11/6 = 11/ 4 * 6/11 = (11*6) / (4*11) = 6/4 = 3/2 = 1_1/2
Объяснение:
0 < x^2 + x - 2 < x + 3
{ x^2 + x - 2 > 0, x^2 + x - 2 < x + 3 }
{ (x + 2)(x - 1) > 0, x^2 < 5 }
Решение первого неравенства: (-∞, -2) ∪ (1, +∞)
Решение второго неравенства: (-√5, √5)
Решение системы неравенств - пересечение этих множеств.
ответ. (-√5, -2) ∪ (1, √5).
2. 0.5^log(2, x^2 - 1) > 1
0.5^log(2, x^2 - 1) > 0.5^0
log(2, x^2 - 1) < 0
0 < x^2 - 1 < 2^0
0 < x^2 - 1 < 1
1 < x^2 < 2
x ∈ (-√2, 1) ∪ (1, √2)
3. 4log(6, 6√4) = 4log(6, 6) + 4log(6, √4) = 4 + 4log(6, 2)