1. в четверг 370:10=37 37:5=7(человек начали в понедельник) и 2 дня рыбачил 8 й рыбак
2. х*(80+70)=(х+1)*80+60, где х время, которое они ехали навстречу друг другу х*(80+70) - искомое расстояние , если учесть, что после х+1 час первому осталось ехать 60 км, то и (х+1)*80+60 =искомому расстоянию. теперь решим уравнение 70х=140 х=2. расстояние= 2*(80+70)=300км
3. в июне 30 дней допустить что х-пасмурные дни, тогда х+0.25*х=30 х=30/1.25 х=24-пасмурных дне и 6 солнечных. теперь допустим что у-холодные дни, тогда у+0.20*у=30 у=30/1.2 у=25-холодных дней и 5 тёплых дней. Пересечение тёплых и солнечных дней является 3-дня. Отсюда следует что было 3 дня солнечных и холодных, 2 дня пасмурных и тёплых. получается 30-3-3-2=22 дня было пасмурных и холодных
1) ΔKNM - равнобедренный,
т.к. MN=NK, как стороны ромба
2) Диагонали ромба перпендикулярны, т.е. NL ⊥ MK.
Значит, ∠MON=∠NOK=90°
3) Диагонали ромба являются биссектрисами углов ромба, значит,
∠MNO=∠ONK=60°:2=30°
4) В прямоугольном треугольнике ΔNOK катет ОК лежит против угла ∠ONK=30°, значит, он равен половине гипотенузы NK.
Найдем гипотенузу NK.
NK= 2· OK
NK=2 · 3 м = 6 м
5) NK= 6 м - сторона ромба.
Найдем периметр ромба Р.
Р = 4 · NK
Р =4 · 6 м = 24 м
Р = 24 м
6) Площадь ромба S, она состоит из суммы площадей четырех равных треугольников.
Найдем площадь S₁ одного из них Δ NOK,
S₁ = 1/2 · NK· r
S₁ = 1/2 · 6 · 2,6 = 7, 8 м²
7) S = 4S₁
S = 4 · 7,8 м² = 31,2 м²
ответ: Р = 24 м
S = 31,2 м²