Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена
Дискриминант больше нуля - два корня
Дискриминант равен нулю. В уравнении 1 корень
Дискриминант меньше нуля, значит нет действительных корней
2)
Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать. В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.
В нашем случае функция не имеет смысла, при х=-1 и х=0
Строим гиперболу
Область определения:
Подставим у=кх в упрощенную функцию.
Очевидно, что при k=0 уравнение (*) решений не будет иметь.
1) Если x>0, то
2) Если x<0, то
Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.
Подставим теперь
Итак, при k=0 и k=±6.25 графики не будут иметь общих точек