М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
wjruwhtu
wjruwhtu
05.07.2022 11:11 •  Алгебра

Прямоугольный газон обнесен изгородью, длина которой 30 м., а разность
неравных сторон равна 1 м. Найдите длины сторон газона.

👇
Открыть все ответы
Ответ:
denis2016sham
denis2016sham
05.07.2022
Доказательство методом математической индукции
База индукции. При n=1 утверждение справедливо.
Действительно 1^2=\frac{n(n+1)(2n+1)}{6}

Гипотеза индукции. Пусть утверждение выполняется для некоторого натурального n=k, т.е. верно равенство
1^2+2^2+3^2+...+k^2=\frac{k(k+1)(2k+1)}{6}

Индукционный переход. Докажем что тогда утверждение справедливо при n=k+1, т.е. что справедливо равенство
1^2+2^2+3^2+..+k^2+(k+1)^2=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
или переписав правую сторону равенства, предварительно упростив
1^2+2^2+3^2+...+k^2+(k+1)^2=\frac{(k+1)(k+2)(2k+3)}{6}

1^2+2^2+3^2+...+k^2+(k+1)^2=
используем гипотезу
\frac{k(k+1)(2k+1)}{6}+(k+1)^2=\\\\(k+1)(\frac{k(2k+1)}{6}+(k+1)}=\\\\(k+1)(\frac{2k^2+k+6k+6}{6}=\\\\\frac{(k+1)(2k^2+7k+6)}{6}=\\\\\frac{(k+1)(2k^2+4k+3k+6)}{6}=\\\\\frac{(k+1)((2k^2+4k)+(3k+6))}{6}=\\\\\frac{(k+1)(2k(k+2)+3(k+2)}{6}=\\\\\frac{(k+1)(k+2)(2k+3)}{6}

Согласно принципу математической индукции данное утверждение справедливо для любого натурального n. Доказано
4,8(21 оценок)
Ответ:
Виилллии
Виилллии
05.07.2022
При n = 1 равенство примет вид 2 = 2, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

1*2 + 2*5 + 3*8 ++n(3n-1) = n^2(n+1)

Следует проверить (доказать), что P(n + 1), то есть

1*2 + 2*5 + 3*8 ++n(3n-1) + (n + 1)(3n + 2)= (n+1)^2(n+2)
истинно. Поскольку (используется предположение индукции)

 1*2 + 2*5 + 3*8 ++n(3n-1) + (n + 1)(3n + 2) =n^2(n+1) + (n + 1)(3n + 2) 

получим

n^2(n+1) + (n + 1)(3n + 2)  = (n + 1) (n^2 + 3n + 2) = (n + 1 )(n + 1)(n + 2) =
= (n + 1)^2 (n + 2)

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

4,5(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ