Задачу можно представить как задачу на нахождение суммы n членов арифметической прогрессии.
Первое натуральное число, кратное 4, - это 4. Значит первый член арифметической прогрессии a1 = 4. Разность прогрессии d = 4 (чтобы выполнялось условие кратности 4-м) .
Для того, чтобы найти сумму, необходимо определить количество членов прогрессии. Известно, что последний член не должен превышать 150, а значит
an ≤ 150
an = a1 + (n - 1)d
a1 + (n - 1)d ≤ 150
4 + (n - 1)4 ≤ 150
1 + (n - 1) ≤ 37,5
n ≤ 37,5
Но n - целое число. Значит n = 37. Тогда an = 4 + (37 - 1)4 = 148
Формула суммы n членов арифметической прогрессии
S = (a1+ an)n/2
S = (4 + 148)37/2 = 2812
ответ:2812
Отметьте лучшим решением и поставьте сердечко
y=x²-4x+3
y=ax²+bx+c
a=1, b=-4, c=3
1) Координаты вершины параболы:
х(в)= -b/2a = -(-4)/(2*1)=4/2=2
у(в) = 2²-4*2+3=4-8+3=-1
V(2; -1) - вершина параболы
2) Ось симметрии параболы проходит через вершину параболы параллельно оси Оу, значит, ось симметрии можно задать уравнением х=2
3) Точки пересечения графика функции с осями координат:
с осью Оу: х=0, y(0)=0²-4*0+3=3
Значит, (0;3) - точка пересечения параболы с осью Оу
с осью Ох: у=0, x²-4x+3=0
D=(-4)²-4*3*1=16-12=4=2²
x₁=(4+2)/2=6/2=3
x₂=(4-2)/2=2/2=1
(3;0) и (1;0) - точки пересечения с осью Ох
4) Строим график функции:
Уже найдены вершина параболы и точки пересечения с осями координат. Точка (4;3) - расположена симметрично точке (0;3) относительно оси симметрии параболы
5) По рисунку видно, что график функции находится в I, II и IV четвертях.
Объяснение:
сделай лучше ответ