1) 3a - 27/4a-36
в числителе выноси общий множитель 3 а в знаменателе 4
и будет 3(а - 9)/4(а - 9) и то что в скобках сокращаем (потому что оно одинаковое) = 3/4
2) 11(d+6)^8 / 88(d+6) = (d+ 6)^8/8
4) Приведи дроби x^2 / x^2−u2 и x−u / 7x+7u к общему знаменателю.
5. 7x^2 / 7(x+u)(x−u) и x^2−2xu+u^2 / 7(x+u)(x−u) (правильный)
5) 3x / x−11 и 8y / x+11
4. 3x^2+33x / x^2−121 и 8yx−88y / x^2−121 (правильный)
Сократите дробь 5m+an−5n−am / a^2−10a+25 до знаменателя 5−a
5m+an−5n−am / a^2−10a+25 = (5 - а)(m - n)/(5 - a)^2 = m - n/ 5 - a
Представьте в виде меогочлена:
1. (х-3)(х^2+2х-6) = х(х^2+2х-6)-3(х^2+2х-6) = х^3+2х^2-6х-3х^2-6х+18 = х^3-х^2-12х+18
2. (у+5)(у^2-3у+8) = у(у^2-3у+8)+5(у^2-3у+8) = у^3-3у^2+8у+5у^2-15у+40 = у^3+2у^2-7у+40
3. (b-2)(b^2-3b-8) = (b-2)(3b^3-18) = 3b^4-18b-6b^3+36 = 3b^4-6b^3-18b+36
4. (а+4)(a^2-6a+2) = a(a^2-6a+2)+4(a^2-6s+2) = a^3-6a^2+2a+4a^2-24a+8 = a^3-2a^2!22a+8
5. (6p-q)(3p+5q) = 6p(3p+5q)-q(3p+5q) = 18p^2+30pq-3pq-5q^2 = 18p^2+27pq-5q^2
Докажите тождество:
1. a(a-2)-8=(a+2)(a-4)
a^2-2a-8=a^2-4a+2a-8
-2a=-4a+2a
-2a=-2a
ответ: утверждение верно.
2. b(b-3)-18=(b+3)(b-6)
b^2-3b-18=b^2-6b+3b-18
-3b=-6b+3b
-3b=-3b
ответ: утверждение верно.
Объяснение:
Решение систем на фотографии