Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Примем весь объем работы за 1. Скорость первой бригады - х, скорость второй бригады у. Тогда за 3,5 часа первая бригада сделала 3,5 х работы. За 6 часов вторая бригада сделала 6у работы. Все это равно всему объему работы, то ест 1. составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе. По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая. поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5; x - y = 5xy; (2) Получили 2 уравнения с 2 неизвестными. Выразим y через x во втором уравнении. x = 5xy + y; x = y(5x + 1) ; y = x /(5x+1);
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12. Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней. Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней. ответ 7 дней для 1 бригады и 12 дней для второй бригады. 12 можно было бы найти проще 5+7 = 12
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так