3/4 (Это дробь).
Объяснение:
1.1. по определению:
(2−x)−1=12−x.
1.2. Рассмотрим важное тождество, которое часто используется на практике: (ab)−1=ba.
Значит: (2−x3x)−1=3x2−x.
1.3. Упростим выражение, которое находится в знаменателе дроби:
3−(2−x3x)−1=3−3x2−x=3\2−x−3x2−x=3(2−x)−3x2−x=6−3x−3x2−x=6−6x2−x.
1.4. Получим: 3x(2−x)−13−(2−x3x)−1=3x2−x6−6x2−x=3x2−x:6−6x2−x=3x2−x⋅2−x6−6x=3x(2−x)(2−x)(6−6x)=3x6−6x.
2. Далее подставим вместо x=35:
3x6−6x=3⋅356−6⋅35=(3⋅35):(6−6⋅35)=3⋅35:6⋅5−6⋅35=95⋅512=9⋅55⋅12=34.
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются