Соберем все слева и приведем к общему знаменателю.
(х²+у²+х+у-2х√у-2у√х)/(√х+√у)=0, дробь равна нулю, когда знаменатель отличен от нуля, а числитель равен нулю.
Но в знаменателе сумма двух неотрицательных чисел, поэтому он равен нулю только когда х=у=0, но эти числа не входя в ОДЗ. ОДЗ -х и у- положительные числа.
Упростим числитель.
х²+у²+х+у-2х√у-2у√х=(х-√у)²+(у-√х)², с учетом ОДЗ,
(х-√у)²=0⇒х=√у
(у-√х)²=0,у=√х
наибольшим будет число в первом равенстве 1, и во втором 1, а их сумма равна 1+1=2, числа 0;0 не подходят, т.к. не входят в ОДЗ,
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.