a² = 12 b² = 3
c² = a² - b² = 12 - 3 = 9 ⇒ c = 3
Фокусы имеют координаты :
F₁ (0; - c) , F₂ (0 ; c) , где c = 3
Значит F₁(0 ; - 3) , F₂(0 ; 3)
Расстояние между фокусами равно 2с, а значит равно : 2 * 3 = 6
6.2)
a² = 10 b² = 26
Аналогично
c² = 26 - 10 = 16 ⇒ c = 4
Координаты фокусов :
F₁(0 ; - 4) , F₂(0 , 4)
Расстояние между фокусами равно 2с, то есть 8.
7.1)
a² = 25 ⇒ a = 5 b² = 9 ⇒ b = 3
c² = a² - b² = 25 - 9 = 16 ⇒ c = 4
В данном случае a > b поэтому эксцентриситетом будет отношение :
e = c/a = 4/5
7.2)
a² = 7 ⇒ a = √7 b² = 16 ⇒ b = 4
В этом случае b > a , поэтому :
c² = b² - a² = 16 - 7 = 9 ⇒ c = 3
e = c/b = 3/4
247/16-х время против течения
247/16+х время по течению, оно на 6ч меньше, чем время против течения.
Составляем уравнение и решаем его
247/16-х - (247/16+х)=6 приводим к общему знаменателю(16+х)(16-х), получаем
247(16+х ) - 247(16-х) = 6(16+х)(16-х)=6(256-х²)
247(16+х-16+х)=1536-6х²
247*2х=1536-6х²
делим на 2
247х=768-3х²
3х²+247х-768=0
Находим корни квадратного уравнения , получаем
Х₁=( -247- √ 2472+4*3*768):2*3= (-247-265):6= отриц.число, скорость течения не может быть отриц. По модулю
Х₂=( -247+ √ 2472+4*3*768):2*3= (-247+265):6=18:6=3 км/ч