Объяснение:
А) Подставляем везде места х цифру 0
3×0/0^2-3×0 = 0
1) 3×0=0
2) 0^2=0
3) 3×0=0
ответ: 0
Подставляем цифру 13 места х
3×13/13^2-3×13= 39/169-39 = 39/130 = 0.3 или 3/10
1) 3×13=39
2) 3^2=169
3) 169-39=130
4) 39:130=0.3 , а если в дробях то 39/130 сокращаем на 13=3/10
ответ: 0.3 или можно также записать 3/10
Б) Подставляем вместо х цифру 3
12(3-3)/24=12/24=2
1) Всегда сначала решаем то что в скобках (3-3) =0
2) Остаётся 12/24 здесь сократим на 12 будет =2
ответ: 2
Подставляем 5 вместо х
12(5-3)/24= 12×2/24=24/24=1
1) Сначала то что в скобках (5-3)=2
2) 12×2=24
3) 24/24=1
ответ:1
В решении.
Объяснение:
Решить систему уравнений:
1) х - у = 1
х + у = 3
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + у
1 + у + у = 3
2у = 3-1
2у = 2
у = 1;
х = 1 + у
х = 1+1
х = 2.
Решение системы уравнений (2; 1).
2) х - 2у = 1
2х + у = 2
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 1 + 2у
2(1 + 2у) + у = 2
2 + 4у + у = 2
5у = 2 - 2
5у = 0
у = 0;
х = 1 + 2у
х = 1.
Решение системы уравнений (1; 0).
Проверка путём подстановки вычисленных значений х и у в системы уравнений показала, что данные решения удовлетворяют данным системам уравнений.
ответ: 4*x-y+8=0, или y=4*x+8.
Объяснение:
Будем искать уравнение касательной в виде y-y0-k*(x-x0). Из уравнения y0=x0²+2*x0+9 находим y0=1²+2*1+9=12, а так как k=f'(x0), то находя производную f'(x)=2*x+2 и подставляя в неё значение x0=1, находим угловой коэффициент касательной k=f'(1)=2*1+2=4. Составляем уравнение касательной: y-12=4*(x-1), или 4*x-y+8=0.