В урне находятся 20 белых и 15 черных шаров. Наудачу вынимают один шар, который оказался белым, и откладывают его в сторону. После этого берут еще один шар. Найдите вероятность того, что этот шар также окажется белым.
Рассмотрим два крайних случая, чтобы доказать, что количество ребят не зависит от распределения 16 юношей по двум классам. 1) Пусть все 16 юношей в классе А, а в классе Б юношей нет. Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0. Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16. Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
1) Пусть все 16 юношей в классе А, а в классе Б юношей нет.
Тогда девушек в 10 А столько же, сколько юношей в 10 Б, то есть 0.
Значит, в классе А 16 юношей, а в классе Б 24 девушки. Всего 40 ребят.
2) Пусть все 16 юношей в классе Б, и там еще 24-16=8 девушек. В классе А юношей нет, а девушек столько же, сколько юношей в Б, то есть 16.
Опять получается, что в классе А 16 ребят, а в Б 24, всего 40 ребят.
ответ 40