Sn = (2*a1+(n-1)*d)*n) / 2
a1 - первый член прогрессии (у нас это 5)
d - разность прогрессии
n - количество членов, для которых мы считаем сумму.
Итак, поехали. Сначала найдем d. Для этого нужно поделить соседние члены прогрессии.
d = -10 / 5 = -2
Теперь подставляем известные нам данные в формулу, посчитаем что сможем и выразим n.
-425 = ((2*5+(n-1)*(-2))*n)/2
-425 = (10 + (-2*n+2)*n)/2
-425 = (10 -2*n^2 + 2*n)/2
- 2n^2 + 2n + 10 = -850
-2n^2+2n+10+850=0
-2n^2+2n+860 = 0
Вот и получилось у нас квадратное уравнение ;)
разделю его на - 2, чтобы проще было решать.
n^2-n-430 = 0
Теперь считаем дискриминант
D= b^2 - 4ac
a - коэффициент перед х в квадрате
b - коэффициент перед х
с - число без переменной.
D= 1 + 4*430= 1721
n = (-b2+-корень из D)/2
n1 = (1+корень из 1721)/2
n2 = (1- корень из 1721)/2
к сожалению я либо где-то обсчиталась, либо надо извлечь из корня приблизительное значение, т.к. оно ну никак не извлекается. Ошибку найти не могу, но принцип решения ясен? =)
Потом в итоге получется 2 разных n. В ответ пиши только положительное, т.к. отрицательных n не бывает.
докажем тождество:
√2 * sin (pi/4 + α) = cos α + sin α;
для того, чтобы выражение, используем формулу тригонометрии sin (a + b) = sin a * cos b + cos a * sin b. тогда получаем:
√2 * (sin (pi/4) * cos a + sin a * cos (pi/4)) = cos a +
sin a;
√2 * (√2/2 * cos a + sin a * √2/2) = cos a + sin a;
раскроем скобки.
√2 * √2/2 * cos a + √2 * sin a * √2/2 = cos a + sin a;
занесем умножение корней под один корень и вынесем значение из - под корня.
получаем:
√4/2 * cos a + √4/2 * sin a = cos a + sin a;
2/2 * cos a + 2/2 * sin a = cos a + sin a;
сократим дроби и выражение.
1/1 * cos a + 1/1 * sin a = cos a + sin a;
cos a + sin a
они идут по порядку
3, 1, -3