1)Решить систему уравнений методом подстановки.
а)Решение системы уравнений (-1; 4);
б)Решение системы уравнений (5; -1);
в)Решение системы уравнений (-1; -1).
2)Решить систему уравнений графически:
Координаты точки пересечения графиков функций (3; 1).
Решение системы уравнений (3; 1).
Объяснение:
1)Решить систему уравнений методом подстановки:
а)3х+у=1
2х-3у= -14
Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:
у=1-3х
2х-3(1-3х)= -14
2х-3+9х= -14
11х= -14+3
11х= -11
х= -1
у=1-3х
у=1-3*(-1)
у=1+3
у=4
Решение системы уравнений (-1; 4);
б)х+у=4
2х+7у=3
Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:
х=4-у
2(4-у)+7у=3
8-2у+7у=3
5у=3-8
5у= -5
у= -1;
х=4-у
х=4-(-1)
х=4+1
х=5;
Решение системы уравнений (5; -1);
в)2х-3(у+1)= -2
3(х+1)+3у=2у-1
Раскрыть скобки:
2х-3у-3= -2
3х+3+3у=2у-1
Привести подобные члены:
2х-3у=1
3х+у= -4
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у= -4-3х
2х-3(-4-3х)=1
2х+12+9х=1
11х=1-12
11х= -11
х= -1
у= -4-3х
у= -4-3*(-1)
у= -4+3
у= -1
Решение системы уравнений (-1; -1).
2)Решить систему уравнений графически:
2х-у=5
х+3у=6
Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Прежде преобразуем уравнения в более удобный для вычислений вид:
2х-у=5 х+3у=6
-у=5-2х 3у=6-х
у=2х-5 у=(6-х)/3
Таблицы:
х -1 0 1 х -3 0 3
у -7 -5 -3 у 3 2 1
Координаты точки пересечения графиков функций (3; 1).
Решение системы уравнений (3; 1).
1. Б
Объяснение: Для умножения многочлена на многочлен существует очень легкое правило. Чтобы умножить два многочлена между собой, надо каждый член первого многочлена умножить на каждый член второго многочлена. После это полученные произведения сложить и привести подобные.
2. А
Объяснение: У вырази a*b е два множники, ''a''*b називається першим множником, а*''b'' називається другим множником.
3. В
Объяснение: Спрощуючи даний вираз, згрупуємо окремо числові та буквені множники.
4. Г
5. Б
Объснение: Коэффицие́нт «совместно» + «производящий») — термин, обозначающий числовой множитель при буквенном выражении, множитель при той или иной степени неизвестного, или постоянный множитель при переменной величине.
6. А