Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
a ∈ ∅
Объяснение:
Графиком трехчлена в левой части является парабола. В таком случае, условие "меньше 0" означает, что график лежит целиком под осью абсцисс, а ветви параболы направлены вниз ( a<0 ).
Если график лежит целиком под осью абсцисс, то нет пересечения графика с осью x, что равносильно отсутствию действительных корней квадратного трехчлена (дискриминант меньше 0).
Т.к. ветви параболы направлены вниз, то параметр a можно представить в виде:
Тогда дискриминант равен:
Получили противоречие (модуль не может быть отрицательным).
Значит не существует такого параметра a, при котором неравенство будет верно при любых значениях x