y=
x
- возрастающая функция ( большему значению аргумента соответствует большее значение функции, это для пунктов е) , f) и g) . )
\begin{gathered}d)\; \; A(a;3\sqrt6):\; \; 3\sqrt6=\sqrt{a}\; \to \; \; a=(3\sqrt6)^2\; ,\; \; a=9\cdot 6=54e)\; \; x\in [\, 0,9\, ]:\; \; y_1=\sqrt 0=0\; ,\; \; y_2=\sqrt9=3\; \; \Rightarrow \; \; y\in [\, 0,3\, ]f)\; \; y\in (\, 12;21\, ]:\; \; 12=\sqrt{x}\; \to \; \; x=12^2=144\; ,21=\sqrt{x}\; \to \; \; x=21^2=441\; \; \Rightarrow \; \; \; x\in [\, 144;441\, ]g)\; \; 0\leq y\leq 2\; \; (tochnee)\; \to \; \; 0\leq \sqrt{x}\leq 2\; ,\; \; 0\leq x\leq 4\end{gathered}
d)A(a;3
6
):3
6
=
a
→a=(3
6
)
2
,a=9⋅6=54
e)x∈[0,9]:y
1
=
0
=0,y
2
=
9
=3⇒y∈[0,3]
f)y∈(12;21]:12=
x
→x=12
2
=144,
21=
x
→x=21
2
=441⇒x∈[144;441]
g)0≤y≤2(tochnee)→0≤
x
≤2,0≤x≤4
Велосипедист и мотоциклист, двигаясь навстречу друг другу, находились в пути: 14-10=4(час)
Отсюда скорость сближения велосипедиста и мотоциклиста равна:
Vсближ.=S/t
V=176:4=44 (км/час)
Скорость сближения, при движении навстречу друг другу, равна сумме скоростей велосипедиста и мотоциклиста., поэтому обозначив скорость
велосипедиста за (х) км/час, скорость мотоциклиста равна (44-х) км/час.
Если бы велосипедист выехал в 13 часов , то до 14 часов, он потратил бы время в пути:
14-13=1 (час), а расстояние, которое он проехал бы составляло: х*1 (км), если бы мотоциклист выехал в 9 часов, то до 14 часов, он потратил бы время в пути:
14-9=5 (час), а расстояние, которое он проехал бы составляло:
(44-х)*5 (км)
А так как общее расстояние , которое бы проехали велосипедист и мотоциклист составляло бы: 176-8=168 (км)
На основании этого составим уравнение:
1*х+(44-х)*5=168
х+220-5х=168
х-5х=168-220
-4х=-52
х=-52:-4
х=13 (км/час) - это скорость велосипедиста
Скорость мотоциклиста равна:
44-13=31 (км/час)
ответ: Скорость мотоциклиста равна 31 км/час