1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
5x - 3y = 1 5x - 3y = 1
- 13y = - 39
13y = 39
y = 3
x + 2y = 8
x + 2*3 = 8
x = 8 - 6
x = 2
ответ: (2 , 3) - решение системы.(методом сложения)
3) y - 3x = - 4 *-2 -2y + 6x = 8
2y + 5x = 25 2y + 5x = 25
11x = 33
x = 3
y - 3*3 = - 4
y = - 4 + 9
y = 5
ответ: ( 3, 5) - решение системы.
4) x - 2y = - 16 *-5 - 5x + 10y = 80
5x + y = - 3 5x + y = - 3
11y = 77
y = 7
x - 2*7 = - 16
x = - 16 + 14
x = - 2
ответ: ( - 2, 7) - решение системы