a) x∈ (-∞;3)
b) x∈ (-∞;0] ∪ [4;+∞)
c) x∈ (-∞;0)∪(0;2/3)
d) x∈ [-1/2;1) ∪ (1;+∞)
Объяснение:
a) f(x)=√(-x+3);
-x+3≥0; -x≥-3; x≤3.
ОО: x∈(-∞;3).
b) f(x)=√(0,5x²-2x); 0,5x²-2x≥0; x(0,5x-2)≥0;
x≥0;
0,5x-2≥0; x≥2/0,5; x≥4; x∈[4;+∞);
x≤0;
0,5x-2≤0; x≤2/0,5; x≤4; x∈(-∞;0];
OO: x∈(-∞;0] ∪ [4;+∞);
c) f(x)=ln(2/x-3);
2/x-3>0; 2/x>3; x<2/3; x∈(-∞;2/3);
x≠0; x∈(-∞;0)∪(0;+∞)
OO: x∈(-∞;0)∪(0;+∞) ∩ (-∞;2/3) ⇒ x∈(-∞;0)∪(0;2/3)
d) f(x)=√(3/(x-1)+2);
3/(x-1)+2≥0; 3+2(x-1)≥0; x≥-1/2; x∈[-1/2;+∞)
x-1≠0; x≠1; x∈(-∞;1)∪(1;+∞)
OO: x∈[-1/2;+∞) ∩ (-∞;1)∪(1;+∞) ⇒ x∈[-1/2;1)∪(1;+∞)
Пускай длина - a, ширина - b.
Если к длине a отнять 4, а к ширине b прибавить 7. То получится квадрат.
У квадрата все стороны равны!
Обозначим стороны данного квадрата:
Длина: a - 4
Ширина: b + 7.
Ширина равняется длине у квадрата.
Значит:
Еще, знаем что площадь квадрата равна 100.
То есть:
Создадим систему уравнений из этих сведений:
Выразим из второго уравнения a:
Подставим в первое уравнение:
Сторона b равняется трём. Есть еще один корень у этого уравнения, но его не рассматриваем, получатся отрицательные значение.
Так как, сторона квадрата равна b + 7, то сторона будет 3 + 7, а это 10.
Можем проверить, найдём еще сторону прямоугольника a = b + 11
a = 3 + 11 = 14
Подставим в первое уравнение:
Задача решена.
ответ: сторона квадрата - 10см.