Пусть х км/ч - собственная скорость катера. Течение реки катеру, увеличивая его скорость, если бы катер плыл ПО течению! Тогда бы к скорости катера нужно было бы добавить скорость течения реки 2 км/ч! И наоборот, течение реки мешает катеру, если он плывет ПРОТИВ течения! Это значит, что скорость реки 2 км/ч нужно вычесть из скорости катера. По условию катер плывет ПРОТИВ течения реки, значит его скорость равна (х-2) км/ч! Катер плыл 3 часа против течения, значит, по формуле расстояния S=v*t имеем: скорость (х-2) нужно умножить на время 3 часа, получим: 3*(х-2) км - проплыл катер всего по реке. Далее, озеро не имеет течения, следовательно, катеру ничего не мешало, но и не двигаться, берем только собственную скорость катера х км/ч и по той же формуле умножаем на время, которое катер плыл по озеру, т.е. на 1 час, имеем расстояние, которое катер проплыл по озеру: х*1 км - проплыл катер всего по озеру По условию сказано, что ВСЕГО катер проплыл 72 км. Следовательно, нужно сложить расстояния, пройденные катером по реке 3*(х-2) и по озеру 1*х и приравнять к известному расстоянию 72 км. В результате имеем уравнение: 3*(х-2)+х=72 Раскрываем скобки и приводим подобные: 3*х-6+х=72 4*х-6=72 4*х=72+6 4*х=78 х=78/4 х=19,5 Так как мы изначально приняли за х собственную скорость катера, то его значение и есть ответ задачи. ответ: собственная скорость катера равна 19,5 км/ч.
производную ищем по формуле :(U/V)' = (U'V - UV')/V²
1) ( (х^2+4)/(x^2-4) )' = ((х^2+4)' *(x^2-4) - (х^2+4)(x^2-4)') / (x^2-4) ²=
=(2x(x² -4) - (x² +4)*2x)/(x² -4)² = (2x³ -8x -2x³ -8x)/(x² -4)² = -16x/(x² -4)².
2) -16x/(x² -4)² = 0, ⇒ -16x = 0 x = 0
x² -4 ≠ 0, ⇒ x ≠ +-2
-∞ -2 0 2 +∞
+ + - - это знаки производной
х = 0 это точка максимума
х = 2 и х = -2 это точки разрыва.