ответ: ≈6,56 см и ≈2,44 см.
Объяснение:Объяснение: Пусть х см одна сторона прямоугольника, (полупериметр прямоугольника равен 18÷2=9 см.), тогда вторая сторона будет 9-х см, т.к. сумма двух сторон прямоугольника равны его полупериметру. По теореме Пифагора (сумма квадратов длин катетов равна квадрату длины гипотенузы) составим уравнение:
х²+(9-х)²=7²
х²+9²-2*9*х+х²=7²
х²+81-18х+х²-49=0
2х²-18х-32=0
х²9х-16=0
D=17
х₁≈6,56 (см) одна, сторона прямоугольника; 9-6,56≈2,44 (см) другая сторона прямоугольника.
или
х₂≈2,44 (см) одна сторона прямоугольника; 9-2,44≈6,56 (см) другая сторона прямоугольника.
Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5