(x^4 - 2x^3 + x^2)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.
Вынесем x^2 в числителе первой дроби:
x^2(x^2 - 2х + 1)/(x^2 + x - 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.
Разложим на множители x^2 - 2х + 1: по теореме Виета х1 + х2 = 2; х1 * х2 = 1. Корни равны 1 и 1. Получается x^2 - 2х + 1 = (х - 1)^2.
Разложим на множители x^2 + x - 2: по теореме Виета х1 + х2 = -1; х1 * х2 = -2. Корни равны -2 и 1. Получается x^2 + x - 2 = (х - 1)(х + 2).
Неравенство приобретает вид x^2(х - 1)^2/(х - 1)(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.
Скобка (х - 1) сокращается, получается x^2(х - 1)/(х + 2) - (2x^3 + x^2 + x - 1)/(x + 2) <= 1.
Приводим к общему знаменателю: (x^2(х - 1) - (2x^3 + x^2 + x - 1))/(x + 2) <= 1;
(x^3 - х^2 - 2x^3 - x^2 - x + 1)/(x + 2) <= 1;
(-x^3 - 2х^2 - x + 1)/(x + 2) <= 1.
Переносим 1 в левую часть и приводим к общему знаменателю:
(-x^3 - 2х^2 - x + 1)/(x + 2) - 1 <= 0;
(-x^3 - 2х^2 - x + 1 - х - 2)/(x + 2) <= 0;
(-x^3 - 2х^2 - 2x - 1)/(x + 2) <= 0.
Вынесем (-1) из числителя и умножим неравенство на (-1):
-(x^3 + 2х^2 + 2x + 1)/(x + 2) <= 0;
(x^3 + 2х^2 + 2x + 1)/(x + 2) >= 0.
Разложим знаменатель на множители:
x^3 + 2х^2 + 2x + 1 = (x^3 + 1) + (2х^2 + 2x) = (х + 1)(х^2 - х + 1) + 2х(х + 1) = (х + 1)(х^2 - х + 1 + 2х) = (х + 1)(х^2 + х + 1).
Получается неравенство (х + 1)(х^2 + х + 1)/(x + 2) >= 0.
Решим неравенство методом интервалов:
Найдем корни неравенства:
х + 1 = 0; х = -1.
х^2 + х + 1 = 0; D = 1 - 4 = -3 (нет корней).
х + 2 = 0; х = -2.
Расставляем знаки неравенства: (+) -2 (-) -1 (+).
Так как неравенство имеет знак >= 0, то решением неравенства будут промежутки (-∞; -2] и [-1; +∞).
1. Функция задана формулой у = 6х + 19. Определите:
а) значение у, если х = 0,5;
б) значение х, при котором у = 1;
в) проходит ли график функции через точку А (–2; 7).
2. а) Постройте график функции у = 2х – 4.
б) Укажите с графика, чему равно значение у при х = 1,5.
3. В одной и той же системе координат постройте графики функций:
а) у = –2х; б) у = 3.
4. Найдите координаты точки пересечения графиков функций
у = 47х – 37 и у = –13х + 23.
5. Задайте формулой линейную функцию, график которой параллелен прямой у = 3х – 7 и проходит через начало координат.
Вариант 2
1. Функция задана формулой у = 4х – 30. Определите:
а) значение у, если х = –2,5;
б) значение х, при котором у = –6;
в) проходит ли график функции через точку В (7; –3).
2. а) Постройте график функции у = –3х + 3.
б) Укажите с графика, при каком значении х значение у равно 6.
3. В одной и той же системе координат постройте графики функций:
а) у = 0,5х; б) у = –4.
4. Найдите координаты точки пересечения графиков функций
у = –38х + 15 и у = –21х – 36.
5. Задайте формулой линейную функцию, график которой параллелен прямой у = –5х + 8 и проходит через начало координат.
Вариант 3
1. Функция задана формулой у = 5х + 18. Определите:
а) значение у, если х = 0,4;
б) значение х, при котором у = 3;
в) проходит ли график функции через точку С (–6; –12).
2. а) Постройте график функции у = 2х + 4.
б) Укажите с графика, чему равно значение у при х = –1,5.
3. В одной и той же системе координат постройте графики функций:
а) у = –0,5х; б) у = 5.
4. Найдите координаты точки пересечения графиков функций
у = –14х + 32 и у = 26х – 8.
5. Задайте формулой линейную функцию, график которой параллелен прямой у = 2х + 9 и проходит через начало координат.
Вариант 4
1. Функция задана формулой у = 2х – 15. Определите:
а) значение у, если х = –3,5;
б) значение х, при котором у = –5;
в) проходит ли график функции через точку K (10; –5).
2. а) Постройте график функции у = –3х – 3.
б) Укажите с графика, при каком значении х значение у равно –6.
3. В одной и той же системе координат постройте график функций:
а) у = 2х; б) у = –4.
4. Найдите координаты точки пересечения графиков функций
у = –10х – 9 и у = –24х + 19.
5. Задайте формулой линейную функцию, график которой параллелен прямой у = –8х + 11 и проходит через начало координат.
Объяснение: