4 задачи= Розв'яжіть задачі.
1. Знайдіть перші чотири члени арифметичної прогресії
(an), якщо а1 = -1,2, d = 0,3.
РОЗВ’ЯЗОК:
2. Знайдіть різницю і сотий член арифметичної прогресії
(an): 5,4; 4,8; 4,2; ... .
РОЗВ’ЯЗОК:
3. Між числами -3 і 11 вставте шість таких чисел, щоб вони разом із даними числами утворювали арифметичну прогресію.
РОЗВ’ЯЗОК:
4. Дана арифметична прогресія: -3,6; -3,3; -3; ... . Знайдіть її найменший додатний член.
РОЗВ’ЯЗОК:
Решаем с метода интервалов: 1). для этого все выражения с х приравниваем к нулю и решаем полученные уравнения (х=0, х= 2);
2). определяем точки, которые соответствуют найденным нулям и отмечаем их выколотыми точками (т.к. неравенство строгое) на оси координат;
3). определяем знаки выражения f(x)
из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
4). наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знак <, то изображается, штрихуются «минусовые» промежутки.
5). Заштихованный промежуток и будет являться ответом.
ответ: (0;2).