Обозначим путь s, а скорость велосипедиста v 27 минут =27/60 часа=9/20 часа 29 минут =29/60 часа время, которое велосипедит тратит на прохождение пути s/v Если он увеличит скорость на 9км/ч , то время прохождения станет s/(v+9) s/v - s/(v+9) = 9/20 Если он уменьшит скорость на 5км/ч , то время прохождения станет s/(v-5) s/(v-5) - s/v = 29/60 получили систему из двух уравнений. Выразим s из каждого из них первое уравнение s/v - s/(v+9) = 9/20 s(1/v - 1/(v+9)) = 9/20 s((v+9-v)/v(v+9)) = 9/20 s(9/v(v+9)) = 9/20 s(1/v(v+9)) = 1/20 s=v(v+9)/20
Пусть х км/ч собственная скорость теплохода х+2 - скорость по течению реки, х-2 - скорость против течения реки Зная, что против течения теплоход расстояние 72км - 72 : (х-2) - это время против течения и 56 : (х+2) - это время по течению. Зная, что разница во времени сост 1 ч, сост ур-ие: 72/(х-2) - 56/(х+2)= 1 72х+144 - 56х+112 = (х-2) (х+2) 16х+256 = х²-4 -х²+16х+256+4 = 0 -х²+16х+260 = 0 Д=в²-4ас Д= 256 - 4 (-1)* (260) Д = 1296 х₁ = -в+√Д / 2а х₂ = -в-√Д / 2а х= -16+36 / -2 х= -16-36 / -2 х= -10 х= 26 Скорость теплохода 26 км/ч