24 числа можно составить.
Из них на 2 делятся 4
На 4 делятся 2
на 11 делятся 4
Объяснение:
у нас есть 4-значное число. на 1 позицию мы можем поставить 4 числа, на 2-3, на 3-2, на 4-1. Перемножая все варианты получаем 24. Значит всего можно составить 24 числа. Из них на 2 деляться только те у кого а конце 2 или 4 то есть. то есть на 1 позицию можно поставить 2 числа (9 или 7) на вторую 1 число, на последние две тоже по 2 числа, получается 4 числа.
Аналогично для деления на 4 только на последние две позиции можно поставить обязательно 24, получаеся только 2 числа.
И для 11 есть 4 разных числа, где сумма на нечетных позициях = сумме на четных, то есть 4+7 и 2+9
столько нулей, скока цифр между запятой и первым периодом: 0,11(6) 116-11 105 7 0,11(6)=== 900 900 60 235-2 233 0.2(35)= = 990 990 2) а)Найдем период дроби, т.е. подсчитаем, сколько цифр находится в периодической части. К примеру, это будет число k. б)Найдем значение выражения X · 10k в)Из полученного числа надо вычесть исходное выражение. При этом периодическая часть «сжигается», и остается обычная дробь. г)В полученном уравнении найти X. Все десятичные дроби переводим в обыкновенные. 0,11(6)=Х k=1 10^(k)=1 тогда x*10=10*0,116666...=1,166666... 10X-X=1,166666...-0,116666...=1,16-0,11=1,05 9X=1,05 105 7 X== 900 60 0.2(35): k=2 10^k=100 100X=0.2353535...*100=23,535353 100X-X=23,535353-0.2353535=23,3 99x=23,3 233 x= 900